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ABSTRACT

We consider metric-based mesh adaptation methods for steady-state partial differential equations (PDEs), solved
using the finite element method in Firedrake. In this work, a number of mesh-adaptive methods are implemented
within this framework, each enabling accurate approximation of a scalar quantity of interest (QoI). Through the
QoI we define adjoint equations, with which we may gain understanding of its sensitivities to aspects of the PDE
solution. Dual weighted residual type error estimation techniques are utilised in order to enable a goal-oriented
strategy. Isotropic and anisotropic approaches are considered, both of which are able to achieve the same relative
error in approximating the QoI as with uniform refinement, but using fewer elements. For validation purposes, we
compare QoI values resulting from these approaches against analytical values which may be extracted for a particular
advection-diffusion based test case. Potential applications in desalination plant outfall modelling are discussed.
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1. INTRODUCTION

In computational fluid dynamics (CFD), it is often
the case that we are required to do more than just ap-
proximate the solution of a PDE. For many problems,
what is most important is the accurate approximation
of some functional, relating to a quantity of interest
(QoI). For example, the QoI could be the drag on an
aeroplane wing [1], the profit or power output of a tidal
turbine array [2], or the ocean surface elevation near
to important coastal infrastructure in the approach of
a tsunami [3]. One method for accurately approxi-
mating such a quantity is to base a mesh adaptation
routine around achieving this goal, as investigated in
this work.

Mesh adaptation relies upon an appropriate choice of
error estimator. Commonly utilised strategies include
gradient-based methods [4], Hessian-based methods
[5] and ‘explicit’ estimators derived from a posteri-

ori bounds [6]. For example, mesh adaptation under
Hessian-based error estimation seeks to minimise the
interpolation error with respect to some scalar field.
The scalar field may be one which is related to the fluid
flow, such as free surface height. We use the term goal-
oriented mesh adaptation to refer to strategies which
seek meshes permitting PDE solutions which minimise
the error accrued in evaluating a QoI, whilst minimis-
ing the usage of computational resources.

The classical approach to goal-oriented error estima-
tion uses the adjoint equation to compute sensitivities
of the QoI to aspects of the PDE solution. In the
pioneering works of [7, 8], the dual weighted residual
(DWR) method was developed, providing linear and
quadratic approximations to the QoI error, in terms of
PDE residuals and the forward and adjoint solutions.

Dual weighted residual error estimation has been used
to drive effective meshing strategies for a number of
CFD applications (such as [9, 10]). The majority of



codes using DWR estimation do not incorporate di-
rectionality; an element is typically refined wherever
the local DWR indicator breaches a pre-specified tol-
erance. This approach is particularly suited to quad-
tree and oct-tree adaptive mesh refinement strategies,
where there is an inherent hierarchical mesh structure
(such as in [3]).

Metric-based mesh adaptation routines take a differ-
ent approach, with meshes interpreted in a continuous
sense using Riemannian metric fields [11]. An advan-
tage of metric-based methods is that they can be used
to produce anisotropic meshes, enabling the accurate
resolution of strongly direction-dependent aspects of
the fluid flow using relatively few elements. That is,
the shape and orientation of mesh elements are taken
into consideration, as well as their size. In its classi-
cal formulation, the DWR error estimator provides a
scalar field, from which we are not able to immediately
extract anisotropic information. However, a number of
strategies have been proposed to achieve this (see, for
example, [12, 13, 14]).

The work of [1] includes an alternative goal-oriented
error analysis to the classical DWR formulation, pro-
viding an error estimator expressed in terms of an
interpolation error, weighted by the adjoint solution.
Within the metric-based framework, it is possible to
produce anisotropic meshes from this formulation.

This paper includes a literature review of anisotropic
approaches to goal-oriented mesh adaptation, includ-
ing those referenced above. The main focus of this
paper is a successful implementation of one isotropic
and two anisotropic approaches to goal-oriented mesh
adaptation within the Firedrake finite element solver
framework. To the best of the authors’ knowledge, this
work provides the first implementation of these three
approaches in the same code framework. Preliminary
numerical experiments show that each approach is able
to achieve a wide range of tolerated errors using fewer
elements than would be required in a uniform mesh.

The organisation of this paper is arranged as follows.
The metric-based mesh adaptation strategy is intro-
duced in Section 2. The theory of goal-oriented er-
ror estimation is outlined in Section 3, along with a
literature review of different strategies for using such
estimators to construct anisotropic metric fields. Sec-
tion 4 outlines the way in which a metric-based, goal-
oriented mesh adaptation strategy has been imple-
mented in this work, which is then used for numer-
ical experiments in Section 5. These numerical exper-
iments concern the TELEMAC-2D ‘Point Discharge
with Diffusion’ steady advection-diffusion test case,
for which an analytical solution exists [15]. This en-
ables us to validate the goal-oriented mesh adaptation
strategies considered. Finally, conclusions are drawn
and outlook discussed in Section 6.

2. METRIC-BASED MESH
ADAPTATION

In this work we utilise a metric-based approach. This
means that the mesh adaptation process is driven by
a Riemannian metric field of dimension n× n, where
Ω ⊂ Rn is the PDE domain.

A Riemannian metric field, or metric, denoted
{M(x)}x∈Ω, is a collection of symmetric positive defi-
nite (SPD) linear forms defined pointwise, which con-
tain local information on distances. Anisotropic edge
lengths and element volumes can be derived from a
metric. The main idea of metric-based mesh adapta-
tion, introduced for the first time in [16], is to use a
Riemannian metric space within the mesher to com-
pute the necessary geometrical quantities, and to gen-
erate a unit mesh with respect to this Riemannian
metric space.

A major advantage of the metric-based approach is
that it enables control of mesh anisotropy, meaning
that not only element size, but also shape and orien-
tation may be dictated.

Given some error estimator η, our aim is to find a mesh
H of the domain Ω such that the numerical solution
of a PDE either: (a) achieves a certain level of error
[12, 17]; or (b) minimises the interpolation error for
a given number of mesh vertices [18, 1]. In this work
we follow the former approach. For this, we need to
establish the error estimator and express it as a metric.

Throughout this paper, we use the notation H when
referring to meshes and K to denote elements thereof.
Occasionally, the cell diameter function h is explicitly
mentioned as a subscript, Hh, if instructive. The edge
set of element K is denoted ∂K, whose normal vectors
are denoted n̂K . The indicator function which is unity
on element K and zero elsewhere is denoted 1K

2.1 Hessian-Based Metric

Suppose u is a (sufficiently smooth) scalar field of in-
terest whose Hessian may be approximated in an ele-
ment K as H. The interpolation error associated with
a linear approximation Ihu is related to H through
the truncated Taylor expansion of u by [19]

‖u− Ihu‖L∞(K) ≤ γmax
x∈K

max
e∈∂K

eT |H(x)|e, (1)

where γ > 0 is a constant related to the spatial di-
mension. Since H is symmetric, it has an orthogonal
eigen-decomposition, H = V ΛV T , meaning it makes
sense to take the absolute value as

|H| = V |Λ|V T . (2)

A metric tensor {M(x)}x∈Ω may be defined as [17]

M(x) =
γ

ε
|H(x)|, (3)



where ε > 0 is the tolerated error level.

Since we take the absolute value for all eigenvalues,
this ensuresM(x) is SPD. Doing so is justified by the
fact that we primarily care about the magnitude of
errors and not their sign. The constant γ does not play
an important role in the adaptation and is difficult to
compute in practice. We follow [17] by setting γ = 1.

By specifying smaller values for the desired error ε in
(3), we allow heightened mesh complexity in return for
reduced interpolation error.

Since in practice the field u is only known in a dis-
crete sense, its Hessian must be approximated using
a recovery technique, which typically involves solving
an auxiliary PDE. In this work, we use a double L2

projection approach (see [17] for details).

For further details on Hessian-based mesh adaptation,
see [17, 19, 20].

2.2 Combining Metric Information

Suppose now that we have two Riemannian metrics,
M1 and M2, each of which captures some aspect of
the PDE solution, or an error estimate thereof. For
instance, we may consider the Hessians of the solutions
of both a PDE and its adjoint.

The most straightforward way to combine these met-
rics is to consider a convex combination

M := αM1 + (1− α)M2, (4)

for a parameter α ∈ (0, 1). That (4) is indeed a metric
follows from the definition of positive-definiteness:

yTM(x)y > 0, ∀y 6= 0. (5)

An advantage of using (4) is that the parameter α
can be used to weight the resulting metric towards
M1 or M2, as appropriate. In this work we consider
exclusively the case where α = 0.5, which we refer
to as metric averaging. The geometrical meaning of
the metric averaging is not intuitive. However, it is
simple to implement and the numerical experiments in
Section 5 illustrate that it can be an effective means
of combining metric information in practice.

Alternatively, metrics can be combined using super-
position (also known as intersection). This method of
combining metric information will always yield meshes
with more elements than those which would arise from
the constituent metrics. Unlike with combination by
(4), this approach is not weighted towards one met-
ric, although the intersection order is in general non-
commutative. For details on metric superposition, see
pp.3778–3779 of [17].

An investigation into the properties of metric super-
position and averaging was considered on pp.131-138

of [21]. In the context of unsteady adaptation applied
to advection problems, metric superposition was found
to deal better with shocks. However, metric averag-
ing was found to be more effective at resolving sharp
angles and small scale features.

2.3 Metric Normalisation

It is necessary to scale metrics before combining them
using the methods outlined in Subsection 2.2. In the
case where two metrics have been constructed from
the Hessians of different fields, for example, there is
no guarantee that these second derivative matrices are
of the same order of magnitude. Normalising before
combination means that the Hessians may be averaged
or superimposed in a meaningful way.

For a Hessian H defined over a domain Ω ⊂ Rn and
fixed p ∈ [1,∞), Lp normalisation is defined by [22]

MLp =
n

ε

(∫
Ω

det(|H|)
p

2p+n dx

) 1
p

det(|H|)
−1

2p+n |H|,

(6)
where ε is the tolerated error level. Taking the limit
p → ∞ yields the strategy referred to as L∞ normal-
isation. This approach corresponds to the case where
(6) reduces to (3), with constant γ = n. Whilst com-
monly used, the L∞ normalisation strategy is not able
to fully capture discontinuities and will in many cases
use very high levels of mesh refinement surrounding
such features. A low order Lp normalisation strategy,
such as p = 1 or p = 2, is more suited to resolving such
features and also permits multiscale mesh adaptation.

2.4 Metric Gradation

We use a metric gradation procedure to ensure that
the sizes prescribed by the metric at neighbouring ver-
tices do not vary by more than a specified threshold,
taken here as β = 1.4. That is, the ratio of the
prescribed sizes is bounded from above by β. This
has the effect that meshes resulting from the metric-
based mesh adaptation routine do not have sudden
changes in resolution, which could act as artificial in-
ternal boundaries in the flow. For details on the metric
gradation algorithm used, see [18].

3. GOAL-ORIENTED ERROR
ESTIMATION

3.1 Forward and Adjoint Equations

Consider a PDE, referred to as the forward equation,

Ψ(u) = 0, (7)

defined upon a domain Ω with piecewise smooth
boundary ∂Ω. For the purposes of this paper, sup-
pose ∂Ω may be decomposed into the disjoint union of



open boundary, Dirichlet and Neumann components
as ∂Ω = ∂Ωopen ∪ ∂ΩD ∪ ∂ΩN .

For a function space V containing the exact (forward)
solution, u, for (7), consider a functional

J : V → R. (8)

Here J describes an important scalar quantity related
to the flow - the so-called quantity of interest (QoI).
Let 〈·, ·〉 denote the usual L2 inner product on Ω and
the L2 inner product over other spaces S be denoted
〈·, ·〉S . We restrict attention to quantities of interest
which can be written as

J(v) = 〈g, v〉, (9)

where g is some kernel function on Ω.

The variational formulation of (7) is given by

− ρ(u, v) = 〈Ψ(u), v〉 = 0, ∀v ∈ V. (10)

We refer to ρ(·, v) as the weak residual of the PDE.
Typically, integration by parts is applied in deriving
this weak residual, so that Neumann boundary condi-
tions may be applied and only first order derivatives
appear. This also becomes important for the construc-
tion of goal-oriented error estimators in Subsection 5.2.

For a finite dimensional subspace Vh ⊂ V , we have the
Galerkin approximation

− ρ(uh, vh) = 〈Ψh(uh), vh〉 = 0, ∀vh ∈ Vh. (11)

The (continuous) adjoint equation associated with (7)
is given by (

∂Ψ

∂u
(u)

)T
u∗ =

∂J

∂u

T

, (12)

where u∗ is the corresponding adjoint solution. The
weak residual ρ∗(·, v) for the adjoint equation satisfies

ρ∗(u∗, v) = 0, ∀v ∈ V, (13)

where

ρ∗(u∗, v) =

〈
∂J

∂u
, v

〉
−

〈(
∂Ψ

∂u
(u)

)T
u∗, v

〉
, (14)

with appropriate application of integration by parts;
similarly for the Galerkin approximation to (12).

Due to assumption (9) on the form of the QoI, we may
rewrite the adjoint weak residual (14) as

ρ∗(u∗, v) = J(v)−

〈(
∂Ψ

∂u
(u)

)T
u∗, v

〉
. (15)

3.2 Estimate for Error in QoI

Due to the goal-oriented error analysis of [8], we have
the classical result

J(u)− J(uh) = ρ(uh, u
∗ − u∗h) +R, (16)

where the remainder term R is quadratic in the for-
ward and adjoint errors e = u− uh and e∗ = u∗ − u∗h.
A ‘second-order’ result is also derived, given by

J(u)−J(uh) =
1

2
ρ(uh, u

∗−u∗h)+
1

2
ρ∗(u∗h, u−uh)+R,

(17)
where the remainder term R is cubic in the forward
and adjoint errors. The remainder terms in (16)
and (17) vanish if we have both a linear PDE and
a quadratic QoI [8].

Goal-oriented error estimators may be derived from
(16) and (17), as outlined in the following subsections.

Local error indicators ηK on each element K of a mesh
H may be extracted from (16) by evaluating

ηK = |ρ(uh, u
∗ − u∗h)|K | . (18)

and from (17) by evaluating

ηK =

∣∣∣∣12ρ(uh, u
∗ − u∗h)|K +

1

2
ρ∗(u∗h, u− uh)|K

∣∣∣∣ .
(19)

Summing over all elements yields a (global) error es-
timator

η :=
∑
K∈H

ηK . (20)

3.3 Isotropic Goal-Oriented Error Estima-
tion

As mentioned in Subsection 3.1, integration by parts
over Ω is typically applied when deriving the varia-
tional formulation (10) of (7). Evaluating error indi-
cators of the form (18) typically involves integrating
by parts again, over each element, K, yielding

ηK =
∣∣∣− 〈Ψh(uh), u∗ − u∗h〉K

+ 〈ψNh (uh), u∗ − u∗h〉∂K∩∂ΩN

+ 〈ψflux
h (uh), u∗ − u∗h〉∂K\∂Ω

∣∣∣,
(21)

where ψNh is the residual of the Neumann boundary
conditions and ψflux

h corresponds to flux terms between
elements. For continuous Galerkin methods, the flux
terms in ψflux

h arise purely due to the Neumann con-
dition. For discontinuous FEM (such as discontinuous
Galerkin (DG) methods [23]), there are also contribu-
tions due to the flux terms incorporated into the weak
residual ρ(·, ·).



A similar expression to (21) results from applying in-
tegration by parts to (17).

As discussed in Section 1, classical DWR approaches
are not usually used to give anisotropic meshes. In
the case of metric-based mesh adaptation, the sim-
plest way to create a metric {M(x)}x∈Ω from (18) is
to scale the identity matrix by an appropriate scalar
field. However, one drawback of this approach is that
(18) is piecewise constant and discontinuous across ele-
ment interfaces (P0), whereas we seek a piecewise lin-
ear metric which is continuous across element inter-
faces (P1). Given an appropriate projection operator
Π1 : P0→ P1, we may define an isotropic metric by

M =

[
Π1η

P0

Π1η
P0

]
, ηP0 :=

∑
K∈H

ηK1K (22)

in the 2D case. One projection approach is to use a
nodewise construction, taking averages of the values
of ηK over adjacent cells, weighted by the area thereof
[9]. Extension of (22) to the 3D case is trivial.

Metrics of the form (22) allow us to control the size of
elements under mesh adaptation, but not their shape
or orientation. The normalisation methods outlined
in Subsection 2.3 should be applied to such isotropic
metrics, as well as the anisotropic ones introduced in
the following subsection.

3.4 Anisotropic Goal-Oriented Error Esti-
mation

The literature contains a number of approaches for ex-
tending the goal-oriented error estimation framework
to obtain anisotropic meshes. Some notable contribu-
tions are summarised in the following.

The approach advocated in [13] uses one mesh corre-
sponding to each spatial dimension, which is refined
uniformly in that direction alone. Local DWR indica-
tors (18) are computed on each mesh and interpolated
onto the base mesh, where a single anisotropic met-
ric is formed. This approach essentially involves the
computation of as many residuals as there are spatial
dimensions, with the corresponding DWR estimators
combined in an appropriate way so as to yield a single
Riemannian metric field.

An alternative approach to DWR error estimation is
considered in [1]. Therein, the result

J(u)− J(uh) = 〈(Ψh −Ψ)(u), u∗〉+ R̃ (23)

is derived, where the remainder term R̃ involves inter-
polation errors on Vh and the adjoint error, e∗. Here
we have what may be interpreted as an interpolation
error in the PDE, weighted by the adjoint solution.

If the PDE can be written in a conservative form,

Ψ(u) = ∇ · F(u) = 0, (24)

then, by integration by parts in (23) and an applica-
tion of the Cauchy-Schwarz inequality, [1]

|J(u)− J(uh)| ≤ 〈|(F −ΠhF)(u)| , |∇u∗|〉Ω
+ 〈
∣∣n̂ · (F −ΠhF)(u)

∣∣ , |u∗|〉∂Ω,
(25)

where F embodies the boundary conditions and terms
resulting from the integration by parts.

Since (25) involves interpolation errors in F and F ,
it is argued that we may use the interpolation error
bound (1) to obtain an anisotropic metric by scaling
components of the Hessians of these quantities by com-
ponents of the adjoint and its gradient. That is, we
define Riemannian metric fields

Hvolume =

n∑
i=1

m∑
j=1

|H(Fi(u))|
∣∣∣∣∂u∗i∂xj

∣∣∣∣ (26)

on the whole domain and

Hsurface =

n∑
i=1

|u∗|

∣∣∣∣∣H
(

m∑
j=1

Fj(u) · nj

)∣∣∣∣∣ (27)

on the domain boundary. Again, the modulus sign
indicates that the Hessian eigenvalues are considered
with a positive sign, to ensure positive-definiteness.
The metrics resulting from (26) and (27) are su-
perposed on the boundary in order to give a glob-
ally defined metric field. For further details, see [1],
where this approach is shown to be effective in solving
aerospace problems using the Euler equations. For the
extension to unsteady problems, see [24, 25].

The approach of [12] also makes use of the Hessian
to form an anisotropic metric. However, in this case,
interpolation errors in the adjoint solution are consid-
ered, as opposed to interpolation errors in the PDE
residual. We may interpret the error representation
(16) as

J(u)− J(uh) ≈ 〈Ψh(uh), u∗ −Πhu
∗〉; (28)

similarly

J(u)− J(uh) ≈ 〈Ψ∗h(u∗h), u−Πhu〉 (29)

for the corresponding expression involving the adjoint
residual.

An element-based anisotropic metric may then be con-
structed from (28) by weighting the Hessian of the
adjoint solution with the residual in the forward equa-
tion:

M̃(K) = ‖Ψh(uh)‖K |H(u∗)|K (30)

and similarly, for (29):

M̃∗(K) = ‖Ψ∗h(u∗h)‖K |H(u)|K . (31)

Here H indicates the average Hessian computed on a
particular element.



As noted, (30) and (31) are defined elementwise,
whereas we seek a (continuous) nodewise metric. In
practice, we apply the same weighted-average projec-
tion operator as in (22) in order to yield a nodewise
definition of the strong residual. Denoting these aver-
aged quantities by |Ψh | and |Ψ∗h |, we may construct
metrics {M(x)}x∈Ω and {M∗(x)}x∈Ω by

M(x) = |Ψh |x|H(u∗h)|x,
M∗(x) = |Ψ∗h |x|H(uh)|x.

(32)

Note that in (32) Hessians in the forward and adjoint
solutions are approximated by Hessians of the corre-
sponding finite element solutions.

Another notable contribution in the field of anisotropic
goal-oriented mesh adaptation is the work of [14]. The
authors make use of upper bounds for interpolation
errors of the forward and adjoint solutions (and gra-
dients thereof) which are expressed in terms of the
anisotropic quantities used by a metric-based mesh
adaptation routine. As with the approaches of [1] and
[12], metrics are defined using Hessians, due to their
relation (1) with interpolation error.

Each of the approaches discussed above (along with
many others which exist in the literature) have been
used to provide logical, effective anisotropic extensions
for goal-oriented mesh adaptation; these approaches
are certainly worth further investigation. However, for
simplicity of the presentation of this paper, we hence-
forth focus on the anisotropic approaches introduced
in [12] and [1], along with the isotropic approach de-
fined by (22).

Another reason for comparing the anisotropic ap-
proaches of [12] and [1] is that the former uses a pos-
teriori error estimation, whilst the latter uses a priori
error estimation. In this classification, we follow [1]
in interpreting an a posteriori standpoint as assuming
knowledge of errors accrued on an existing mesh and
an a priori standpoint as assuming knowledge of the
PDE solution. That is, the a posteriori metrics (30)–
(31) involve residuals evaluated on the current mesh,
whereas the a priori metrics (26)–(27) involve exact
solutions for the forward and adjoint PDEs and make
no reference to finite element solutions. In practice,
these exact values are of course approximated by fi-
nite element solutions, given by replacing instances of
u and u∗ with uh and u∗h, respectively. However, the
difference in classification has to do with the derivation
of the methods, rather than implementation details.

For the reasons discussed above, we henceforth refer
to meshes adapted using metrics (30)–(31) (and com-
binations thereof) as a posteriori and metrics derived
from (26)–(27) as a priori. The isotropic approach is
also a posteriori.

It is worth remarking that, whilst the anisotropic

methods considered are inspired by the work of [12]
and [1], there are some notable differences between
the original implementations and those used in this
work. Further details regarding these differences are
discussed in Subsection 5.2.

4. IMPLEMENTATION

4.1 Error Estimate Evaluation

An important aspect of goal-oriented error estimate
evaluation is the treatment of forward and adjoint er-
ror terms, e = u − uh and e∗ = u∗ − u∗h, since these
terms are clearly unknown. In the following, we as-
sume the PDE is to be solved in P1 space, although
the same logic applies to other finite element spaces.

One approach for approximating e∗ involves an aux-
iliary adjoint PDE. Given the current mesh Hh, con-
sider an iso-P2 refinement, denoted Hh/2. That is,
we insert vertices wherever there would be quadrature
nodes of a piecewise quadratic element, effectively qua-
drupling the number of elements. Henceforth, we refer
to this as uniform refinement.

The adjoint PDE is solved on Hh/2 in P2 space, yield-

ing an approximation û∗h/2 to the adjoint solution u∗.
On the same mesh, we obtain a linear approximation
by projection, meaning the adjoint equation need only
be solved once in order to approximate this error. We
obtain an estimate for the adjoint error by projecting
the difference back onto Hh. In summary:

u∗ − u∗h ≈ û∗h/2 −Π1û∗h/2, (33)

where Π1 is the projection operator into P1 space.

This approach requires considerable additional compu-
tational resources, since the adjoint equation must be
solved again on a fine mesh, in a higher order space.
However, we illustrate in Section 5 that it provides
proof of concept that the DWR error estimation strat-
egy can be effectively deployed within our framework
to yield high quality meshes. For nonlinear PDEs,
one could argue that additional adjoint solves are less
problematic than additional forward solves, since the
adjoint PDE is always only linear.

An alternative approach performs local patch-based
interpolation, using a supermesh of Hh. The approx-
imate adjoint solution u∗h may then be interpolated
onto the supermesh (see pp.870-871 of [14] for details).

Both of the strategies referred to above may also be ap-
plied to approximation of the primal error e, through
additional solves of the forward PDE.

For the a posteriori anisotropic approach, we do not
actually need to evaluate the adjoint error terms, since
this is approximated using the Hessian. As such, the



above discussion is not of concern. In the a priori
case, we follow the authors of [1] in approximating
gradients in the exact adjoint solution by gradients
in the numerical approximation thereof. As such, ap-
proximation of e and e∗ is only required for isotropic
metrics. In these cases, we make use of the space en-
richment approach, providing a benchmark to which
the anisotropic strategies may be compared.

4.2 Mesh Adaptation Approach

In this subsection the mesh adaptive solver routine is
outlined for stationary PDEs.

Given an initial mesh H0 and a desired error level
ε > 0, we construct a sequence of meshes {Hi}i∈N by
iteratively solving the PDE and its adjoint, evaluating
an appropriate error estimator and extracting an as-
sociated metric field. See Algorithm 1 for a workflow
representation.

Given desired error ε > 0;
Given initial mesh H0;
Set i := 0;
while not converged do

Solve PDE on Hi;
Solve adjoint PDE on Hi;
Evaluate error estimator and QoI;
Extract metric Mi from error estimator for
desired error ε;

Apply metric gradation to Mi;
Adapt mesh using Mi to obtain Hi+1;
if source term f is not analytic then

Interpolate f onto Hi+1;
end
Increment i;

end
Algorithm 1: Mesh adaptation routine.

Convergence is attained when either the change in QoI
or the number of mesh elements falls below some rel-
ative tolerance, both taken here as 0.5%, as recom-
mended in [12]. A maximum iteration count of 35
is imposed. In practice, assuming that H0 is rela-
tively isotropic, we find that at least three mesh it-
erations are required in order to introduce anisotropy
into meshes resulting from Algorithm 1. As such, we
require that at least three iterations are performed.

Under the assumption that source terms are described
analytically, there is no need to interpolate across
meshes, since the source term can be defined in a
mesh-independent way. This is the case considered in
the numerical experiments of Section 5. If the source
term is defined using data then interpolation will be
required whenever a new mesh is considered.

In this work we restrict attention to steady problems,

with unsteady problems to be considered in the future.
In such problems, solutions must be transferred from
one mesh to another between timesteps.

4.3 Software

Firedrake is a Python based finite element package
with a high-level interface which is intuitive from
the perspective of a mathematician [26]. PDEs in
weak form are expressed using Unified Form Lan-
guage (UFL) [27] in a very similar way as they would
be written by hand. Firedrake uses sophisticated
code generation technology to produce efficient low-
level code. This automatically generated C code uses
PETSc [28, 29] to solve the resulting linear and non-
linear systems.

Anisotropic mesh adaptation is achieved in Firedrake
using the Pragmatic library [30]. This C++ library
takes as input an arbitrary mesh and a metric field
over it and returns a mesh that is adapted to the met-
ric. The adapted mesh is derived from the input one
through a series of mesh modifications (edge splits,
collapses and swaps and vertex smoothing in the 2D
case) that optimise the lengths of the edges as well as
a certain quality functional. More detail can be found
in [31, 32, 33]. Pragmatic and Firedrake are interfaced
through PETSc [34, 35]. High-level error estimate in-
formation is passed to Pragmatic using Riemannian
metric fields constructed in Firedrake using the FEM
solutions of the PDE and its adjoint.

Conservative projection [36] between meshes in Fire-
drake is enabled by the libsupermesh library [37, 38].
Evaluating DWR error estimators using the higher or-
der finite element solution (33) requires these projec-
tion operators to transfer information to and from the
iso-P2 refined space, upon which the approximation to
u∗ − u∗h is constructed.

For the PDE considered in the Section 5 of this paper,
the continuous form adjoint is easily derived and may
be solved in the same manner as the forward equation.
For more complex PDEs or boundary conditions, Fire-
drake also supports the automatic generation and so-
lution of the adjoint PDE in a discrete adjoint type ap-
proach, using pyadjoint [39, 40]. Note that stabilising
the continuous adjoint equation using the same strat-
egy as for the forward PDE is not in general equivalent
to generating the discrete adjoint equation from the
stabilised PDE. For example, these discretisations for
the adjoint PDE are not equivalent for SUPG stabili-
sation applied to advection-diffusion problems, which
we consider in Section 5.

The Firedrake and PETSc versions used in this work
are archived using Zenodo as [41]. The simulation code
used to generate results in Section 5 is archived as [42].



5. NUMERICAL EXPERIMENTATION

5.1 Forward and Adjoint Equations

For the purposes of numerical experimentation, con-
sider steady advection-diffusion of a passive tracer φ
immersed in a fluid with velocity u and diffusivity ν:

u · ∇φ−∇ · (ν∇φ) = f in Ω
νn̂ · ∇φ = gN on ∂ΩN

φ = gD on ∂ΩD,
(34)

where f is a source term. For a function space V ,
consider the weak formulation

a(φ, v) = L(v), ∀v ∈ V, (35)

where

a(φ, v) :=〈u · ∇φ, v〉+ 〈ν∇φ,∇v〉
− 〈νn̂K · ∇φ, v〉∂Ω\∂ΩN

,

L(v) :=〈f, v〉+ 〈gN , v〉∂ΩN .

(36)

Thus ρ(·, v) ≡ L(v) − a(·, v). Stabilisation terms are
usually added to (35) in order to control under- and
over-shoots that are typical with advection-dominated
problems. In this work we use (continuous) Lagrange
(P1) finite elements and Streamline Upwind Petrov
Galerkin (SUPG) stabilisation, under which an addi-
tional term 〈Ψ(φ),u · ∇v〉 is used, where

Ψ(φ) = f − u · ∇φ+∇ · (ν∇φ) (37)

denotes the strong residual for (34). For further details
on the stabilisation strategy, see [43].

The continuous adjoint equation associated with (34)
may be derived as
−∇ · (uφ∗)−∇ · (ν∇φ∗) = ∂J

∂φ
in Ω

φ∗ = 0 on ∂Ω\∂ΩN
νn̂ · ∇φ∗ + φ∗u · n̂ = 0 on ∂Ω\∂ΩD.

(38)
Note that the derivative of the QoI with respect to
the forward solution provides a source term for the
adjoint equation. SUPG stabilisation applied to the
adjoint equation requires the adjoint strong residual,

Ψ∗(φ∗) =
∂J

∂φ
+∇ · (uφ∗) +∇ · (ν∇φ∗). (39)

5.2 Goal-Oriented Metrics

Formulating the DWR estimator amounts to applying
integration by parts on each element. For the sta-
bilised version of the CG formulation given in (35),
this yields

ρh(φh,φ
∗ − φ∗h)|K

=〈Ψ(φh), φ∗ − φ∗h〉K
+ 〈νn̂K · ∇φh − gN , φ∗ − φ∗h〉∂K∩∂ΩN

+ 〈νn̂K · ∇φh, φ∗ − φ∗h〉∂K\∂Ω

+ 〈Ψ(φh),u · ∇(φ∗ − φ∗h)〉K ,

(40)

where the terms on the RHS correspond to those given
in (21), along with the stabilisation error term. Ob-
serve that if φh is replaced with the (assumed smooth)
exact solution of (34) then this estimator vanishes.
Similarly, if φ∗ − φ∗h is replaced with the adjoint finite
element solution φ∗h ∈ Vh then the estimator vanishes,
because φh is a solution in the finite element space Vh.
When summed over all elements of the mesh, the in-
ner product over ∂K\∂Ω in (40) corresponds to a flux
jump term.

For the stabilised adjoint equation, we have the DWR
estimator

ρ∗h(φ∗h, φ− φh)|K
= 〈Ψ∗(φ∗h), φ− φh〉K
+ 〈νn̂K · ∇φ∗h + φ∗hu · n̂K , φ− φh〉∂K\(∂Ω\∂ΩD)

+ 〈Ψ∗(φ∗h),u · ∇(φ− φh)〉K ,
(41)

where the boundary and flux terms have been com-
bined due to their similarity.

Isotropic metrics may be constructed from (40) and
(41) using (22). The strong residual in the forward
PDE required for constructing the anisotropic metric
(30) is given by (37), whilst the strong residual in the
adjoint PDE required for (31) is given by (39).

For metrics constructed from (26)–(27) to make sense,
we require the PDE (34) to be in conservative form.
Due to the constant velocity field, it may be expressed
in terms of a potential functional F as

∇ · F(φ) = f, F(φ) = uφ− ν∇φ. (42)

However, the source term f requires special treatment.
In this work we neglect the boundary metric terms
arising from (27) and construct a metric by summing
(26) and the Hessian of the source term:

M =|H(F1(φ))|
∣∣∣∣∂φ∗∂x

∣∣∣∣+ |H(F2(φ))|
∣∣∣∣∂φ∗∂y

∣∣∣∣
+ |H(f)| |φ∗|.

(43)

A similar strategy is used for the corresponding adjoint
metric. That is, for a potential functional G satisfying

∇ · G(φ∗) = g, G(φ∗) = −uφ∗ − ν∇φ∗, (44)

we define an adjoint metric

M =|H(G1(φ∗))|
∣∣∣∣∂φ∂x

∣∣∣∣+ |H(G2(φ∗))|
∣∣∣∣∂φ∂y

∣∣∣∣
+ |H(g)| |φ|,

(45)

recalling that g = ∂J
∂φ

. To the best of the authors’
knowledge, no a priori error result for the adjoint
equation equivalent to (23) exists in the literature.



Nonetheless, extending the a priori metric construc-
tion by combining the forward metric (43) with the
adjoint metric (45) is shown in Section 5 to provide
meshes upon which the QoI may be accurately ap-
proximated.

Following (6), we use L1 metric normalisation for all
goal-oriented mesh adaptation strategies. Using L1

normalisation, as opposed to the more commonly ap-
plied L∞ normalisation, allows us to better capture
the discontinuities associated with the source terms in
the forward and adjoint equations.

It is worth remarking that, whilst stabilisation errors
have been accounted for in (40) and (41), they are
not considered in either of the anisotropic metric tech-
niques considered in this paper. An investigation of
how best to integrate the stabilisation error into these
anisotropic metrics is something to be considered in fu-
ture work. However, stabilisation errors are accounted
for in the anisotropic metrics constructed in [14].

5.3 Point Source Test Case

For this work we consider the ‘Point Discharge with
Diffusion’ test case from TELEMAC-2D validation
document version 7.0 [15], whose source is a delta func-
tion at the point x0 = (x0, y0) = (1, 5) in the domain
Ω = [0, 50]× [0, 10].

The fluid velocity u = (ux, uy) ≡ (1, 0) is entirely in
the x-direction and the diffusivity ν ≡ 0.1 is constant.
An inflow condition of φ ≡ 0 is imposed at the bound-
ary where x = 0, along with free-slip conditions for
y ∈ {0, 10} and an open boundary at x = 50. The only
difference in the test case considered here is that we
consider the point source to be located at x0 = (2, 5),
so that it is not as close to the inflow boundary. We
consider the same initial mesh as in [15], comprised of
a uniform grid of 4,000 right-angled triangles.

The quantities of interest considered take the form

Ji(φ) =

∫
Ω

1Riφ dx =

∫
Ri

φ dx, (46)

where Ri ⊂ Ω are ‘receiver’ regions, for i ∈ {1, 2}.
That is, each kernel g = 1Ri is an indicator function.
Goal-oriented mesh adaptation seeks a mesh which
permits an accurate approximation of the tracer con-
centration over the receiver region. Both (46) and (34)
are linear, meaning that the error estimates provided
by (16) and (17) are exact [8].

For a related application in environmental science,
consider the inlet and outlet pipes of a desalination
plant. The former pipe brings sea water into the plant,
extracting from region Ri. Salt is extracted from this
water and the remaining salt residues are released back
into the ocean through the latter pipe, depositing at

x0. An undesirable (but entirely possible) situation is
the one in which a significant quantity of salt from the
outlet pipe is later taken back into the plant at the
inlet, making the task of desalination more difficult.

For this application we do not necessarily care about
the wider dispersal of high salinity water, but rather
achieving an efficient and accurate calculation of the
salinity at the inlet pipe. If salt is interpreted as a pas-
sive tracer in the fluid flow, we can model its advection
and diffusion using (34) and quantify its concentration
at the inlet using (46). Through goal-oriented mesh
adaptation, we are able to select a mesh which gives a
good approximation to the salinity at the inlet, whilst
retaining a relatively small number of elements.

As in the similar steady-state advection-diffusion test
case examined in [12], we consider two scenarios: one
where the receiver is directly downstream from the
source and one where it is offset to one side of the
channel. Given the definition of the disc

Bε(y) = {x ∈ Ω | ‖x− y‖2 ≤ ε}, (47)

we choose R1 = B 1
2
((20, 5)) in the former instance and

R2 = B 1
2
((20, 7.5)) in the latter.

As documented in [15], the analytical solution for this
problem is given by

φexact(x) =
q

2πν
exp

(uxx
2ν

)
K0

(
ux‖x− x0‖

2ν

)
,

(48)
where q denotes the inflow discharge at the source and
K0 is the modified Bessel function of the second kind
and order zero.

Evaluating the QoI amounts to integrating (48) over
region R1 or R2, as appropriate. Due to the pres-
ence of the modified Bessel function, we are not able
to perform this integration analytically and hence re-
sort to applying numerical quadrature on a sequence
of increasingly refined uniform meshes. For the cases
of both centred and offset receiver regions, we attain
convergence to five decimal places on a mesh with
1,024,000 elements, as illustrated in Table 1. The close
agreement between QoI values under analytical and
finite element solutions validates our P1 SUPG FEM
solution strategy.

Thus the benchmark values Jexact
1 = 0.16344 and

Jexact
2 = 0.06959 are obtained using the analytical so-

lution evaluated on this mesh. The analytical solution
(48) is presented in Figure 1a on this mesh, along with
finite element approximations to the forward and ad-
joint solutions. In each case, P1 elements are used.

An initial qualitative observation to be made from
Subfigures 1a–1b and Table 1 is that the piecewise lin-
ear finite element approximation on the fine uniform



Elements J1(φ) J1(φh) J2(φ) J2(φh)

4,000 0.20757 0.20547 0.08882 0.08901
16,000 0.16904 0.16873 0.07206 0.07205
64,000 0.16263 0.62590 0.06924 0.06922
256,000 0.16344 0.16343 0.06959 0.06958

1,024,000 0.16344 0.16345 0.06959 0.06958

Table 1: Convergence of QoIs J1 and J2 under an-
alytical and finite element solutions on a sequence of
uniform meshes. Columns labelled Ji(φ) correspond
to analytical solutions, whilst columns labelled Ji(φh)
correspond to finite element solutions.

(a) Analytical solution (48).

(b) Finite element forward solution.

(c) Finite element adjoint solution corresponding to QoI
J1 and receiver R1.

(d) Finite element adjoint solution corresponding to QoI
J2 and receiver R2.

Figure 1: Analytical and finite element solutions for
the TELEMAC-2D ‘Point Discharge with Diffusion’
validation experiment [15], along with adjoint solu-
tions corresponding to QoIs J1 and J2. Each field is
presented on a 1,024,000 element uniform mesh.

mesh provides an excellent approximation to the ana-
lytical solution. It appears from Subfigures 1a–1b that

the only region where there is a noticeable difference
between the analytical and finite element solutions is
near the boundary for x ∈ [30, 50]. This is in agree-
ment with what may be observed in the TELEMAC-
2D solution given in [15].

Whilst (34) has a point source term at x0 = (2, 5), the
corresponding adjoint equations have source terms in
regions R1 and R2, which are discs with radius 0.5.
As such, we observe from Subfigures 1c–1d that the
source regions are indeed larger than in the forward
PDE. Whilst in the forward PDE information flows in
the direction of positive x, we observe from Subfigures
1c–1d that information flows in the opposite direction
for the adjoint PDE, as is to be expected.

The purpose of the numerical experimentation de-
scribed in this subsection is to obtain meshes from
goal-oriented error metrics, upon which Jexact

1 and
Jexact

2 may be accurately approximated (for some de-
sired error level ε), under the condition that the
meshes have as few elements as possible. By fulfilling
this purpose, we illustrate the successful implementa-
tion of goal-oriented mesh adaptation.

We do not intend to make a rigorous performance anal-
ysis, since the problem size considered is relatively
small; larger scale problems are required for testing
run-time. Instead, we capitalise on the existence of
the analytical solution (48), using it to validate our
approach and thereby imply that the mesh adapta-
tion strategies considered here may be readily applied
to more complicated PDE problems.

5.3.1 Centred Receiver Region

Firstly, we consider the case of R1, wherein the re-
ceiver is directly downstream of the source. We con-
sider three different goal-oriented approaches for resid-
uals in the forward PDE: isotropic mesh adaptation
based on (22); a posteriori anisotropic mesh adapta-
tion based on (30); and a priori anisotropic mesh adap-
tation based on (43). Henceforth, we shall use these
names when referring to the three approaches.

Figure 2 illustrates a selection of meshes adapted using
these strategies. In each mesh, we observe that there is
coarse resolution downstream of the receiver location.
Given that this problem is advection-dominated, this
is to be expected, as it indicates the insensitivity of the
tracer concentration at the receiver to what happens
downstream from there. Additionally, in each case
there is a region of high resolution surrounding the
point source, which enables us to accurately capture
the dynamics thereof.

As expected, we observe elements with significantly
more anisotropy in the meshes displayed in Subfig-
ures 2b and 2c than in 2a. Note that a posteri-



(a) Mesh with 12,246 elements resulting from isotropic
adaptation using (22).

(b) Mesh with 16,407 elements resulting from a posteriori
anisotropic adaptation using (30).

(c) Mesh with 44,894 elements resulting from a priori
anisotropic adaptation using (43).

Figure 2: Meshes generated using goal-oriented met-
rics as indicated, for receiver region R1.

ori anisotropic metrics constructed using (30) contain
the Hessian of the adjoint solution. The influence of
this Hessian is visible as the three bands propagating
against the flow in Subfigure 2b, relating to regions
where the second derivatives are most significant.

Figure 3: Relative error in Jexact
1 for finite element so-

lutions computed on meshes arising from: uniform re-
finement; isotropic adaptation; a posteriori anisotropic
adaptation; and a priori anisotropic adaptation.

Figure 3 plots the relative error in approximating
Jexact

1 for a sequence of mesh adaptations. This se-
quence is generated using decreasing values of ε > 0,
to specify the desired error level. For large values of ε,
the resulting goal-oriented meshes are often extremely
coarse, with an insufficient number of elements to cap-

ture the QoI at all, leading to a zero value. These data
are excluded from the figures displayed in this work.

Table 1 shows convergence of the QoI to its analytical
value, Jexact

1 , on a sequence of uniform meshes. Figure
3 illustrates that this also occurs under all three goal-
oriented mesh adaptive approaches.

For a given accuracy level relative to the converged
QoI value, all three goal-oriented meshing strategies
are able to achieve this using fewer elements than re-
quired using uniform meshes. Further, the anisotropic
approaches outperform the isotropic method in the
sense that they require fewer elements to reach the
1% accuracy level. However, the isotropic approach
attains 2% accuracy using as few as 3,000 elements and
the three methods yield fairly similar results overall.

Whilst it appears from Figure 3 that the anisotropic
metrics do not lead to significant gains over isotropic
ones, it is important to recall that the latter approach
requires an auxiliary FEM solve in a higher order, iso-
P2 refined space. In particular, the construction of
the isotropic metric involves approximating the ad-
joint solution in an enriched space. This additional
FEM solve is inherently more computationally inten-
sive than solving the adjoint equation in the unen-
riched space, meaning a significant computational cost
is accrued. This motivates using anisotropic methods,
for which no such auxiliary FEM solves are required.

Next we consider combining the metrics used above
with the corresponding metrics associated with the ad-
joint equation. For this, we use the metric averaging
and superposition operators defined in Subsection 2.2.
For the isotropic approach, we combine the forward
metric used above with an isotropic metric constructed
using (41) and (22). The a posteriori anisotropic ap-
proach combines (30) and (31), whilst the a priori ap-
proach combines (43) and (45).

In each case illustrated in Figure 4, we observe a de-
gree of symmetry in the region x ∈ [2, 20] about the
line x = 11, which marks halfway between the source
and receiver. This symmetry follows from the simi-
larity of the forward and adjoint solutions referred to
in Subfigures 1b and 1c. One noticeable break in this
symmetry is exhibited in Subfigures 4e and 4f, where
the different forms of the forward and adjoint source
terms (point source and disc) are clearly visible. The
high element count in Subfigure 4e is due to many ele-
ments being deployed in order resolve the discontinu-
ous source terms in the forward and adjoint equations
- a feature which is also visible in Subfigure 4f.

As observed in Figure 2, the goal-oriented strategies
advocate low resolution downstream of the receiver,
since the QoI is insensitive to what happens there.



(a) Mesh with 26,792 elements resulting from averaging
isotropic metrics.

(b) Mesh with 12,300 elements resulting from superposing
isotropic metrics.

(c) Mesh with 16,538 elements resulting from averaging a
posteriori anisotropic metrics.

(d) Mesh with 26,116 elements resulting from superposing
a posteriori anisotropic metrics.

(e) Mesh with 45,108 elements resulting from averaging a
priori anisotropic metrics.

(f) Mesh with 18,383 elements resulting from superposing
a priori anisotropic metrics.

Figure 4: Meshes generated using combined goal-
oriented metrics as indicated, for receiver region R1.

A first observation to be made from the relative er-
ror plot in Figure 5 is that all goal-oriented meshing
strategies considered succeed in yielding solutions with
the same level of error as is attained on a uniform
mesh, but with fewer elements.

Compared with the results shown in Figure 3, we ob-
serve in Figure 5 that both superposing and averaging
isotropic metrics provide meshes upon which the 1%
error level may be attained using fewer elements. We
deduce that the isotropic adjoint error metric contains
information which improves the error estimation.

Figure 5: Relative error in Jexact
1 resulting from mesh

adaptation routines which combine forward and ad-
joint error metrics. Here av. and sup. denote ‘average’
and ‘superposition’, respectively.

For the anisotropic approaches, there does not appear
to be any clear improvement attained under metric
combination for the centred receiver case. One possi-
ble explanation for this is that the forward anisotropic
metrics already recommend relatively high resolution
in the directly downstream of the source, as is visible
in Subfigures 2b and 2c. As such, the information as-
sociated with the adjoint metric is not so important in
the case of a centred receiver region.

However, the superposition and averaging of metrics
are shown to yield meshes with 2,000-3,000 elements,
upon which the QoI error is less than 5%. This is in
contrast with the initial 4,000 element uniform mesh,
upon which the corresponding error is 25.7%.

In conclusion, the above experiments validate the
three goal-oriented mesh adaptation implementations
in the case where the receiver is directly downstream
from the source.

5.3.2 Offset Receiver Region

Secondly, we consider the case with an offset receiver
region, indicated by R2.

Again, all three meshes shown in Figure 6 use coarse
resolution downstream of the receiver region. Addi-
tionally, relatively coarse resolution is used in the lower
part of the domain. This is to be expected, since the
sensitivity of the QoI to what happens in this region
is negligible, as indicated in Subfigure 1d.

Whilst the isotropic metric recommends heightened
mesh resolution in a band spanning the region be-
tween source and receiver (as seems reasonable for
a goal-oriented strategy), both anisotropic strategies



(a) Mesh with 19,399 elements resulting from isotropic
adaptation using (22).

(b) Mesh with 9,868 elements resulting from anisotropic
adaptation using (30).

(c) Mesh with 29,143 elements resulting from anisotropic
adaptation using (43).

Figure 6: Meshes generated using goal-oriented met-
rics as indicated, for receiver region R2.

prefer to use high resolution surrounding the source
and receiver. In the case of the a priori anisotropic
metric, this is likely due to the Hessians of the source
terms. In the forward equation, the source term is
a delta function, whilst in the adjoint equation it is
an indicator function. As such, both of these source
terms are discontinuous (and hence non-differentiable)
on the edges of the source regions. However, our ap-
plication of L1 normalisation means that the resulting
goal-oriented meshes are able to capture these discon-
tinuous features. In the context of QoI error estima-
tion, we accept additional mesh resolution surround-
ing region R2, since this ultimately permits a more
accurate approximation.

As with the centred receiver, Figure 7 illustrates all
three goal-oriented approaches eventually converging
to Jexact

2 . Additionally, both a posteriori goal-oriented
approaches require fewer elements to attain the 1%
relative error level than on a uniform mesh. The
anisotropic a posteriori approach requires particularly
few elements to attain this threshold - around 10,000.

The a priori approach offers a reduction in error over
uniform meshing if 10,000 elements or fewer are to
be used. On the other hand, this strategy appears
to offer no significant improvement over using uniform
meshes if more than 10,000 elements are to be used. It
is likely that the a priori anisotropic approach suffers
from over-resolving the source region at the expense of
under-resolving the receiver, for the reasons discussed
above. Examining Subfigure 6c, it appears that mesh
resolution is more focused on the source than the re-

Figure 7: Relative error in Jexact
2 and error estima-

tor (16) evaluated on meshes arising from: uniform re-
finement; isotropic adaptation; a posteriori anisotropic
adaptation; and a priori anisotropic adaptation.

ceiver, supporting this argument. That the a priori
approach uses high resolution around the (discontinu-
ous) source term is due to the inclusion of its Hessian.

The leftmost data point for the isotropic approach in-
dicates an error less than 1% using even fewer ele-
ments: 2,035. However, the next data point suggests
that the first is in fact a QoI error which is anoma-
lously small. On closer examination of the 2,035 el-
ement mesh, the receiver is covered by only very few
elements, suggesting that the QoI value may only be
coincidentally close to the analytical value. Indeed,
this potential anomaly warrants further investigation
in future work.

Finally, we consider combined forward and adjoint
metrics related to the case of a receiver which is offset
from the centre of the channel.

Figure 8 illustrates many of the phenomena which have
already been discussed, including the lack of unneces-
sary downstream resolution, as well as large numbers
of elements used near to source and receiver regions in
Subfigures 8e and 8f.

As in the previously considered cases, Figure 9 shows
all goal-oriented approaches achieving relative errors
below the 1% level using fewer elements than required
on uniform meshes. Further, all three goal-oriented
approaches seem to be improved by inclusion of ad-
joint error estimator information, because smaller er-
rors may be attained using the same number of ele-
ments as previously. These improvements are in con-
trast to Figure 5, where the additional information
from the adjoint metric does not significantly improve
the QoI approximation. For receiver regions which are



(a) Mesh with 13,980 elements resulting from averaging
isotropic metrics.

(b) Mesh with 19,588 elements resulting from superposing
isotropic metrics.

(c) Mesh with 9,289 elements resulting from averaging a
posteriori anisotropic metrics.

(d) Mesh with 14,470 elements resulting from superposing
a posteriori anisotropic metrics.

(e) Mesh with 25,204 elements resulting from averaging a
priori anisotropic metrics.

(f) Mesh with 49,793 elements resulting from superposing
a priori anisotropic metrics.

Figure 8: Meshes generated using combined goal-
oriented metrics as indicated, for receiver region R2.

offset from the centre of the flow, it appears that the
adjoint metric provides useful information for obtain-
ing meshes which yield accurate QoI estimates.

The superposition of a posteriori anisotropic met-
rics results in small errors using particularly few ele-
ments, as does the averaging of isotropic metrics. The
anomaly observed in Figure 7 for the isotropic metric
seems to also appear here, although to a lesser extent.

In Subsection 5.2 we remark that it is not known
whether the adjoint metric associated to the a priori
approach relates to a rigorous error estimate. How-

Figure 9: Relative error in Jexact
2 resulting from mesh

adaptation routines which combine forward and ad-
joint error metrics. Notation as in Figure 5.

ever, the fact that the error may be reduced by in-
clusion of this information indicates that it certainly
contains practical value.

That the relative error is so consistently small for
each anisotropic method - using only very few ele-
ments - illustrates the great potential of anisotropic
goal-oriented mesh adaptation.

For the a posteriori anisotropic and averaged isotropic
methods, we observe that the QoI approximation ac-
curacy ‘saturates’ at around 0.5%, for meshes with
over 4,000 elements. Uniform meshing requires around
64,000 elements in order to achieve this error thresh-
old. As such, the saturation of the errors resulting
from these goal-oriented approaches indicates that the
high resolution required by a 64,000 element mesh is
being achieved in the important regions under these
strategies. In particular, sufficient resolution is used
in the region of interest. However, lower resolution is
used elsewhere, where it is unnecessary.

The major success is that all goal-oriented metrics
illustrate convergence to Jexact

2 using (often signif-
icantly) fewer elements than required on uniform
meshes. That is, we demonstrate the capability of our
implementation of goal-oriented mesh adaptation to
accurately approximate QoIs of the form of J1 and J2

for model steady-state advection-diffusion problems.

Having validated the three methods for the centred
and offset receiver cases, we argue that they may be
utilised in more complex velocity fields in future work.

5.4 Three Dimensional Problems

Whilst serving their purpose as validation experi-
ments, two dimensional approximations are insuffi-



cient for many realistic CFD applications, such as the
desalination outfall problem discussed in Subsection
5.3. Figure 10 illustrates the extension of the goal-
oriented methodology to such problems.

The offset receiver tracer transport test case examined
in Subsection 5.3 is extended to three dimensions in
the natural way by considering source location x0 =
(2, 5, 5), region of interest centred at (20, 7.5, 7.5) and
fluid velocity u = (1, 0, 0).

Figure 10: Clip of a mesh with 1,776,396 elements
resulting from goal-oriented mesh adaptation for a 3D
extension of the TELEMAC-2D test case discussed in
Subsection 5.3. The metric is obtained by averaging
forward and adjoint a posteriori anisotropic metrics.

The 3D mesh plot shown in Figure 10 exhibits a wide
range of scales, from high resolution near to the source
and receiver to very coarse resolution downstream of
the receiver region. The cell volumes range from 1.25×
10−10 cubic units to 4.81 cubic units, covering more
than ten cubic orders of magnitude. That is, there
are variations of a factor of as much as 1,000 in each
direction. Clearly, using a uniform mesh with cells of
volume 1.25× 10−10 is completely prohibitive.

That the goal-oriented adaptation strategy exhibited
in Figure 10 is capable of producing multi-scale meshes
is essential when moving to large-scale realistic 3D ap-
plications, where the region of interest is tiny in com-
parison to the domain size.

It is also worth noting that, for PDE problems with
quantities of interest of the form used in this work, the
advantages associated with goal-oriented mesh adap-
tation improve with spatial dimension. The ratio be-
tween the volume/area of the region of interest to the
volume/area of the domain decreases when we gener-
alise the 2D problem as described in Subsection 5.3 to
the 3D problem considered here.

Consider the slice plots shown in Figure 11, which

(a) Finite element solution on a uniform mesh with
1,920,000 elements.

(b) Finite element solution on a 1,766,396 element mesh
which was obtained by adaptation with respect to aver-
aged forward and adjoint a posteriori metrics.

Figure 11: Slices of the solution to the 3D exten-
sion of the TELEMAC-2D test case discussed in Sub-
section 5.3, presented on meshes as indicated. Slices
were taken on the plane intersecting source and re-
ceiver which is orthogonal to the z-axis.

compare isosurfaces of finite element solutions com-
puted on a uniform mesh and the goal-oriented adap-
tive mesh shown in Figure 10. The impact of the
low downstream resolution is visible in Subfigure 11b,
where grid-scale features are apparent in the isosur-
face contours. In contrast, the contours of the uniform
mesh isosurfaces shown in Subfigure 11a are relatively
smooth across the entire domain. Given the location
of the receiver, the downstream resolution applied in
the uniform mesh case is unnecessary, as observed in
Subsection 5.3.

Another clear advantage of the goal-oriented mesh is
that it is able to accurately capture the point source.
This cannot be said for the uniform mesh case, where
the area surrounding the source appears to have suf-
fered from numerical diffusion effects. Accurately ap-
proximating the source term is essential for capturing
the resultant downstream dynamics.

6. CONCLUSION

The main achievement of this work is the successful
implementation of three approaches to goal-oriented



mesh adaptation in the finite element package Fire-
drake. To the best of the authors’ knowledge, this
is the first comparison of these rather different ap-
proaches within a single framework.

An established advection-diffusion test case with a
known analytical solution is considered in Section 5.
The fact that an analytical solution exists means that
the implementation may be validated by showing that
a quantity of interest converges to its exact value un-
der each goal-oriented approach. The experiments in
Section 5 illustrate that all three goal-oriented strate-
gies enable convergence of two different quantities of
interest to their analytical values using (often signif-
icantly) fewer elements than would be required for
uniform meshes. Whilst no clear conclusions may
be drawn concerning the optimality of one particu-
lar goal-oriented approach, this work motivates fur-
ther investigation of each of these strategies within
the Firedrake framework.

In a number of instances, it is shown that combining
forward and adjoint goal-oriented error metrics, by su-
perposition or averaging, can lead to smaller errors in
QoI estimation, for the same number of elements. In
particular, this work contains a novel anisotropic met-
ric construction strategy, based on the extension of a
known a priori metric to an equivalent metric corre-
sponding to the adjoint equation. To the best of the
authors’ knowledge, it has not yet been shown that this
metric relates to a rigorous error estimator. However,
the numerical experiments in Section 5 show that com-
bining this metric with the established a priori metric
can result in meshes with relatively few elements upon
which the QoI may be accurately approximated. Fu-
ture work will seek a rigorous error estimate associated
with this metric.

The numerical experiments performed in Subsection
5.3 may be considered as simplified interpretations of a
desalination outfall modelling scenario, with idealised
domains, fluid velocities and diffusivity coefficients.
Such idealised problems are useful for validation pur-
poses, due to the existence of analytical solutions.

Moving to more realistic applications comes with a
number of additional challenges. Namely, realistic de-
salination outfall problems are inherently three dimen-
sional, tide-dependent and multi-scale, with the di-
ameters of the inlet and outlet pipes, the scales of
key mixing processes, and the size of the ocean do-
main varying across multiple orders of magnitude. Fu-
ture work will extend the goal-oriented adaptation ap-
proach discussed in this paper to unsteady problems
with realistic domains and tidal forcing within the
Thetis coastal ocean modelling framework [44] which
is built on top of Firedrake. That this work extends
to three dimensions is illustrated in Subsection 5.4.

Due to the relatively small sizes of the experiments
considered in Subsection 5.3, performance analyses
were not considered in this paper. Larger scale test
cases should be investigated in future work, wherein
such experiments can be made rigorous.

Additionally, we intend to investigate goal-oriented
mesh adaptation in the context of more compli-
cated finite element discretisations. One increasingly
popular discretisation is the discontinuous Galerkin
(DG) space family [23], within which additional inter-
element flux terms arise in the formulation of dual
weighted residual error estimators.

Acknowledgements

Many thanks to members of Imperial College London’s
Applied Modelling and Computation Group (AMCG)
and to the developers of the Firedrake and Thetis
projects for their useful recommendations regarding
this work. Further thanks to staff and students of
the Mathematics of Planet Earth Centre for Doctoral
Training (MPE CDT) for their ongoing support and
advice. This work was funded by the Engineering and
Physical Sciences Research Council (EPSRC) under
grants EP/L016613/1 and EP/R029423/1.

References

[1] Loseille A., Dervieux A., Alauzet F. “Fully
anisotropic goal-oriented mesh adaptation for 3D
steady Euler equations.” Journal of computa-
tional physics, vol. 229, no. 8, 2866–2897, 2010

[2] Funke S.W., Kramer S.C., Piggott M.D. “Design
optimisation and resource assessment for tidal-
stream renewable energy farms using a new con-
tinuous turbine approach.” Renewable energy,
vol. 99, 1046–1061, 2016

[3] Davis B.N., LeVeque R.J. “Adjoint methods
for guiding adaptive mesh refinement in tsunami
modeling.” Global Tsunami Science: Past and
Future, Volume I, pp. 4055–4074. Springer, 2016

[4] Zienkiewicz O.C., Zhu J.Z. “A simple error es-
timator and adaptive procedure for practical en-
gineering analysis.” International journal for nu-
merical methods in engineering, vol. 24, no. 2,
337–357, 1987

[5] Loseille A., Alauzet F. “Optimal 3D highly
anisotropic mesh adaptation based on the contin-
uous mesh framework.” Proceedings of the 18th
International Meshing Roundtable, pp. 575–594.
Springer, 2009

[6] Ainsworth M., Oden J.T. “A posteriori error es-
timation in finite element analysis.” Computer



methods in applied mechanics and engineering,
vol. 142, no. 1-2, 1–88, 1997

[7] Becker R., Rannacher R. A feed-back approach
to error control in finite element methods: basic
analysis and examples. IWR, 1996

[8] Becker R., Rannacher R. “An optimal control
approach to a posteriori error estimation in finite
element methods.” Acta numerica, vol. 10, 1–102,
2001

[9] Venditti D.A., Darmofal D.L. “Anisotropic grid
adaptation for functional outputs: application to
two-dimensional viscous flows.” Journal of Com-
putational Physics, vol. 187, no. 1, 22–46, 2003

[10] Wang Y., Ragusa J.C. “Standard and goal-
oriented adaptive mesh refinement applied to ra-
diation transport on 2D unstructured triangular
meshes.” Journal of Computational Physics, vol.
230, no. 3, 763–788, 2011

[11] Loseille A., Alauzet F. “Continuous mesh frame-
work part I: well-posed continuous interpolation
error.” SIAM Journal on Numerical Analysis,
vol. 49, no. 1, 38–60, 2011

[12] Power P., Pain C.C., Piggott M., Fang F., Gor-
man G.J., Umpleby A., Goddard A.J., Navon
I. “Adjoint a posteriori error measures for
anisotropic mesh optimisation.” Computers &
Mathematics with Applications, vol. 52, no. 8-9,
1213–1242, 2006
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